Step 1: Use the identity.
We use the identity \( \alpha^3 + \beta^3 = (\alpha + \beta)[(\alpha + \beta)^2 - 3\alpha\beta] \). The sum and product of the roots can be calculated using Vieta’s formulas, where \( \alpha + \beta = -\frac{b}{a} \) and \( \alpha\beta = \frac{c}{a} \).
Step 2: Conclusion.
Thus, the value of \( \alpha^3 + \beta^3 \) is \( 3ab + b^3 \).