Step 1: In Discrete-Time Systems, stability and causality are analyzed using the Z-transform.
Step 2: The system is BIBO (Bounded-Input Bounded-Output) stable if: \[ \sum_{n=-\infty}^{\infty} |h(n)|<\infty \]
Step 3: Stability Condition in the Z-Domain:
- The system is BIBO stable if all poles lie inside the unit circle (\( |z|<1 \)).
- If all poles are outside the unit circle, the system is not BIBO stable.
Step 4: Causality Condition:
- A system is causal if its Region of Convergence (ROC) is outside the outermost pole.
- However, if all poles are outside the unit circle, the ROC is not valid for causality in practical systems.
Step 5: Evaluating options:
- (A) Incorrect: The system is not necessarily causal.
- (B) Incorrect: The system is not BIBO stable.
- (C) Incorrect: The system is neither BIBO stable nor causal.
- (D) Correct: Since the system is neither BIBO stable nor causal, the correct choice is None of the above.
In amplitude modulation, the amplitude of the carrier signal is 28 V and the modulation index is 0.4. The amplitude of the side bands is:
In the given figures of logic gates, if the inputs are A=1, B=0, and C=1, find the values of \( y_1 \), \( y_2 \), and \( y_3 \) respectively.
The ratio of the wavelengths of the first and second Balmer lines of the hydrogen spectrum is:
A proton and an alpha particle are moving with kinetic energies of 4.5 MeV and 0.5 MeV respectively. The ratio of the de Broglie wavelengths of the proton and alpha particle is:
A closed-loop system has the characteristic equation given by: $ s^3 + k s^2 + (k+2) s + 3 = 0 $.
For the system to be stable, the value of $ k $ is:
A digital filter with impulse response $ h[n] = 2^n u[n] $ will have a transfer function with a region of convergence.