Step 1: Compute the Original Sum
The sum of the first 100 natural numbers is determined using the formula:
\[
\text{Sum} = \frac{n(n + 1)}{2}
\]
For \( n = 100 \):
\[
\text{Sum} = \frac{100 \times 101}{2} = 5050.
\]
Thus, the original sum is 5050.
Step 2: Identify Numbers Containing the Digit '6'
We need to find all numbers from 1 to 100 that contain the digit '6', as these will be modified when '6' is replaced by '9'.
\begin{itemize}
\item Single-digit number: 6
\item Two-digit numbers:
\begin{itemize}
\item Numbers with '6' in the tens place: 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
\item Numbers with '6' in the units place: 16, 26, 36, 46, 56, 66, 76, 86, 96
\end{itemize}
\end{itemize}
Since 66 appears twice in this list, we must avoid counting it twice.
Step 3: Compute the Increase for Each Number
Replacing '6' with '9' results in the following increases:
\begin{itemize}
\item Single-digit number:
\begin{itemize}
\item 6 → 9: Increase by 3
\end{itemize}
\item Numbers where the tens digit is 6:
\begin{itemize}
\item 60 → 90: +30
\item 61 → 91: +30
\item 62 → 92: +30
\item 63 → 93: +30
\item 64 → 94: +30
\item 65 → 95: +30
\item 66 → 99: +33 (both digits change)
\item 67 → 97: +30
\item 68 → 98: +30
\item 69 → 99: +30
\end{itemize}
\item Numbers where the units digit is 6 (excluding 66, already counted):
\begin{itemize}
\item 16 → 19: +3
\item 26 → 29: +3
\item 36 → 39: +3
\item 46 → 49: +3
\item 56 → 59: +3
\item 76 → 79: +3
\item 86 → 89: +3
\item 96 → 99: +3
\end{itemize}
\end{itemize}
Step 4: Calculate the Total Increase
Summing up the increases:
\begin{itemize}
\item Single-digit contribution: \( 3 \)
\item Numbers where the tens digit is 6:
\[
(30 \times 9) + 33 = 270 + 33 = 303
\]
\item Numbers where the units digit is 6 (excluding 66):
\[
3 \times 8 = 24
\]
\end{itemize}
Total Increase:
\[
3 + 303 + 24 = 330.
\]
Step 5: Verify with Given Options
The total increase is 330. Checking the options:
\begin{enumerate}[label=(\Alph*)]
\item 330
\item 350
\item 300
\item 100
\end{enumerate}
The correct answer is \(\boxed{A}\).