Step 1: Understand the relationship between the edge length and radius.
For simple cubic, body-centered cubic, and face-centered cubic, the ratio of radius to edge length differs based on the arrangement of the atoms in the unit cell.
Step 2: Conclusion.
For these arrangements, the radius to edge length ratio is \( \frac{\sqrt{2}}{4} \) for the face-centered cubic structure.
Final Answer:
\[
\boxed{\frac{\sqrt{2}}{4} \, a}
\]