Atoms touch along the edges.
\[ 2r = a \]
Therefore, radius for SC:
\[ r = \frac{a}{2} \]
Atoms touch along the body diagonal of the cube.
\[ 4r = \sqrt{3}a \]
Therefore, radius for BCC:
\[ r = \frac{\sqrt{3}a}{4} \]
Atoms touch along the face diagonal.
\[ 4r = \sqrt{2}a \]
Therefore, radius for FCC:
\[ r = \frac{\sqrt{2}a}{4} = \frac{a}{2\sqrt{2}} \]
Simple cubic : Body-centered cubic : Face-centered cubic
\[ \frac{a}{2} : \frac{\sqrt{3}a}{4} : \frac{a}{2\sqrt{2}} \]
The correct ratio is:
\( \frac{1}{2}a : \frac{\sqrt{3}}{4}a : \frac{1}{2\sqrt{2}}a \)
Correct Answer: Option (B)