Step 1: Convert units to SI.
Mass \(m = 50\,\text{g} = 0.05\,\text{kg}\), Diameter = 20 cm \(\Rightarrow\) Radius \(r = 0.1\,\text{m}\)
Velocity \(v = 5\,\text{cm/s} = 0.05\,\text{m/s}\)
Step 2: Total Kinetic Energy of rolling object:
\[
KE = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2
\]
For solid sphere: \(I = \frac{2}{5}mr^2\), \(\omega = \frac{v}{r}\)
\[
KE = \frac{1}{2}mv^2 + \frac{1}{2} \cdot \frac{2}{5}mr^2 \cdot \left( \frac{v^2}{r^2} \right)
= \frac{1}{2}mv^2 + \frac{1}{5}mv^2 = \frac{7}{10}mv^2
\]
\[
KE = \frac{7}{10} \cdot 0.05 \cdot (0.05)^2 = \frac{7}{10} \cdot 0.05 \cdot 0.0025 = 8.75 \times 10^{-7}\, \text{J}
\]