\(\frac{\sqrt{37}+\sqrt{13}}{2}\)
\(\frac{\sqrt{13}+\sqrt{12}}{2}\)
\(\sqrt{(37)} + \sqrt{(13)}\)
\(\sqrt{(13)} + \sqrt{(12)}\)
Longer diagonal = \( 2a \),
Shorter diagonal = \( 2b \)
\[ \text{Area} = \frac{1}{2} \cdot d_1 \cdot d_2 = \frac{1}{2} \cdot 2a \cdot 2b = 2ab = 12 \] \[ \Rightarrow ab = 6 \tag{1} \]
Each side of rhombus forms a right triangle with half-diagonals: \[ \text{Side} = \sqrt{a^2 + b^2} = 5 \Rightarrow a^2 + b^2 = 25 \tag{2} \]
Sum and difference formulas:
\[ (a + b)^2 = a^2 + b^2 + 2ab = 25 + 2 \cdot 6 = 37 \Rightarrow a + b = \sqrt{37} \tag{3} \] \[ (a - b)^2 = a^2 + b^2 - 2ab = 25 - 12 = 13 \Rightarrow a - b = \sqrt{13} \tag{4} \]
Add Eq. (3) and (4): \[ a + b + a - b = 2a = \sqrt{37} + \sqrt{13} \Rightarrow a = \frac{\sqrt{37} + \sqrt{13}}{2} \] So, the longer diagonal: \[ 2a = \sqrt{37} + \sqrt{13} \]
Let the rhombus have:
\[ \text{Area} = \frac{1}{2} \cdot d_1 \cdot d_2 = \frac{1}{2} \cdot 2a \cdot 2b = 2ab = 12 \] \[ \Rightarrow ab = 6 \tag{1} \]
Since the diagonals bisect each other at right angles: \[ \left(\frac{2a}{2}\right)^2 + \left(\frac{2b}{2}\right)^2 = (\text{side})^2 \Rightarrow a^2 + b^2 = 25 \tag{2} \]
\[ (a + b)^2 = a^2 + b^2 + 2ab = 25 + 2 \cdot 6 = 37 \Rightarrow a + b = \sqrt{37} \tag{3} \]
\[ (a - b)^2 = a^2 + b^2 - 2ab = 25 - 12 = 13 \Rightarrow a - b = \sqrt{13} \tag{4} \]
aAdding equations (3) and (4): \[ (a + b) + (a - b) = 2a = \sqrt{37} + \sqrt{13} \] \[ \Rightarrow \boxed{\text{Longer diagonal} = 2a = \sqrt{37} + \sqrt{13}} \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is: