Step 1: Recall that for an \(n \times n\) matrix:
\[
|\operatorname{adj}(A)| = |\det(A)|^{n-1}
\]
Given \(n = 3\) and \(|A| = 2\), then:
\[
|\operatorname{adj}(A)| = 2^{3-1} = 2^{2} = 4
\]
Step 2: Find \(|\operatorname{adj}(\operatorname{adj}(A))|\). Since \(\operatorname{adj}(A)\) is also a \(3 \times 3\) matrix, apply the same formula:
\[
|\operatorname{adj}(\operatorname{adj}(A))| = |\det(\operatorname{adj}(A))|^{3-1} = |\det(\operatorname{adj}(A))|^{2}
\]
Step 3: But \(\det(\operatorname{adj}(A)) = |\operatorname{adj}(A)|\), so:
\[
\det(\operatorname{adj}(A)) = 4
\]
Step 4: Substitute:
\[
|\operatorname{adj}(\operatorname{adj}(A))| = 4^{2} = 16
\]