Step 1: Using the identity: \[ A \cdot \operatorname{adj}(A) = \det(A) I \] Given: \[ A \cdot \operatorname{adj}(A) = 10 I \] So, \[ \det(A) = 10 \] Step 2: For a square matrix of order \(n\), the determinant of the adjoint matrix is related to the determinant of the original matrix as: \[ |\operatorname{adj}(A)| = |\det(A)|^{n-1} \] Since \(n = 3\): \[ |\operatorname{adj}(A)| = |\det(A)|^{2} = 10^2 = 100 \] Step 3: Given \(A \cdot \operatorname{adj}(A) = 10 I\), so \(\det(A) = 10\).
Therefore, \[ |\operatorname{adj}(A)| = 10^{2} = 100 \] Then, \[ \frac{1}{25} |\operatorname{adj}(A)| = \frac{100}{25} = 4 \] But the correct answer in options is 4, option (d). So the correct answer is 4.
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Identify the part of the sentence that contains a grammatical error:
Each of the boys have submitted their assignment on time.
Rearrange the following parts to form a meaningful and grammatically correct sentence:
P. a healthy diet and regular exercise
Q. are important habits
R. that help maintain good physical and mental health
S. especially in today's busy world