Step 1: Understanding the Concept:
This problem involves simplifying a matrix polynomial expression using the properties of matrix algebra and a given condition \( A^2 = I \). Since a matrix \( A \) and the identity matrix \( I \) commute (i.e., \( AI = IA = A \)), we can use standard binomial expansion formulas.
Step 2: Key Formula or Approach:
We use the binomial expansion formulas:
Step 3: Detailed Explanation:
Let's expand the terms \( (A - I)^3 \) and \( (A + I)^3 \):
\[ (A - I)^3 = A^3 - 3A^2I + 3AI^2 - I^3 \]
Since \( I^n = I \) and \( A^2 = I \), this becomes:
\[ (A - I)^3 = A^3 - 3A^2 + 3A - I \]
Now, let's expand the second term:
\[ (A + I)^3 = A^3 + 3A^2I + 3AI^2 + I^3 = A^3 + 3A^2 + 3A + I \]
Now add the two expansions:
\[ (A - I)^3 + (A + I)^3 = (A^3 - 3A^2 + 3A - I) + (A^3 + 3A^2 + 3A + I) \]
\[ = 2A^3 + 6A \]
We are given that \( A^2 = I \). Let's find an expression for \( A^3 \):
\[ A^3 = A^2 \cdot A = I \cdot A = A \]
Substitute \( A^3 = A \) back into the expression:
\[ (A - I)^3 + (A + I)^3 = 2(A) + 6A = 8A \]
Finally, subtract the last term from the original question:
\[ (A - I)^3 + (A + I)^3 - 3A = 8A - 3A = 5A \]
Step 4: Final Answer:
The value of the expression is 5A.
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |