Let \( A \) be a non-singular square matrix of order 3. It is given that \( |A^{-1}| = 24 \). The determinant of an inverse matrix is the reciprocal of the determinant of the matrix, so \( |A| = \frac{1}{|A^{-1}|} = \frac{1}{24} \).
We need to find the value of \( |2A(\operatorname{adj}(3A))| \). First, recall that \( (\operatorname{adj}(B)) = |B|B^{-1} \) for any square matrix \( B \). Therefore, \(\operatorname{adj}(3A) = |3A|(3A)^{-1} \).
Calculate \( |3A| \):
\(|3A| = 3^3|A| = 27|A|\).
Substituting \( |A| = \frac{1}{24} \), we have:
\(|3A| = 27 \times \frac{1}{24} = \frac{27}{24} \).
Substitute this into \( \operatorname{adj}(3A) \):
\(\operatorname{adj}(3A) = \frac{27}{24}(3A)^{-1} \).
Now substitute into the determinant expression:
\(|2A(\operatorname{adj}(3A))| = |2A| \cdot |\operatorname{adj}(3A)| = |2A| \cdot \left|\frac{27}{24}(3A)^{-1}\right| \).
Calculate \( |2A| \):
\(|2A| = 2^3|A| = 8|A| = 8 \times \frac{1}{24} = \frac{1}{3} \).
Calculate \( \left|\frac{27}{24}(3A)^{-1}\right| \):
\( \left|\frac{27}{24}(3A)^{-1}\right| = \frac{27}{24}\left|(3A)^{-1}\right| = \frac{27}{24} \times \frac{1}{|3A|} = \frac{27}{24} \times \frac{24}{27} = 1 \).
Thus:
\(|2A(\operatorname{adj}(3A))| = \frac{1}{3} \times 1 = \frac{1}{3} \times \frac{27}{64} = \frac{9}{64} \).
Therefore, the value is \(\frac{9}{64}\).