Let \( A \) be a non-singular square matrix of order 3. It is given that \( |A^{-1}| = 24 \). The determinant of an inverse matrix is the reciprocal of the determinant of the matrix, so \( |A| = \frac{1}{|A^{-1}|} = \frac{1}{24} \).
We need to find the value of \( |2A(\operatorname{adj}(3A))| \). First, recall that \( (\operatorname{adj}(B)) = |B|B^{-1} \) for any square matrix \( B \). Therefore, \(\operatorname{adj}(3A) = |3A|(3A)^{-1} \).
Calculate \( |3A| \):
\(|3A| = 3^3|A| = 27|A|\).
Substituting \( |A| = \frac{1}{24} \), we have:
\(|3A| = 27 \times \frac{1}{24} = \frac{27}{24} \).
Substitute this into \( \operatorname{adj}(3A) \):
\(\operatorname{adj}(3A) = \frac{27}{24}(3A)^{-1} \).
Now substitute into the determinant expression:
\(|2A(\operatorname{adj}(3A))| = |2A| \cdot |\operatorname{adj}(3A)| = |2A| \cdot \left|\frac{27}{24}(3A)^{-1}\right| \).
Calculate \( |2A| \):
\(|2A| = 2^3|A| = 8|A| = 8 \times \frac{1}{24} = \frac{1}{3} \).
Calculate \( \left|\frac{27}{24}(3A)^{-1}\right| \):
\( \left|\frac{27}{24}(3A)^{-1}\right| = \frac{27}{24}\left|(3A)^{-1}\right| = \frac{27}{24} \times \frac{1}{|3A|} = \frac{27}{24} \times \frac{24}{27} = 1 \).
Thus:
\(|2A(\operatorname{adj}(3A))| = \frac{1}{3} \times 1 = \frac{1}{3} \times \frac{27}{64} = \frac{9}{64} \).
Therefore, the value is \(\frac{9}{64}\).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Identify the part of the sentence that contains a grammatical error:
Each of the boys have submitted their assignment on time.
Rearrange the following parts to form a meaningful and grammatically correct sentence:
P. a healthy diet and regular exercise
Q. are important habits
R. that help maintain good physical and mental health
S. especially in today's busy world