Let \( A \) be a non-singular square matrix of order 3. It is given that \( |A^{-1}| = 24 \). The determinant of an inverse matrix is the reciprocal of the determinant of the matrix, so \( |A| = \frac{1}{|A^{-1}|} = \frac{1}{24} \).
We need to find the value of \( |2A(\operatorname{adj}(3A))| \). First, recall that \( (\operatorname{adj}(B)) = |B|B^{-1} \) for any square matrix \( B \). Therefore, \(\operatorname{adj}(3A) = |3A|(3A)^{-1} \).
Calculate \( |3A| \):
\(|3A| = 3^3|A| = 27|A|\).
Substituting \( |A| = \frac{1}{24} \), we have:
\(|3A| = 27 \times \frac{1}{24} = \frac{27}{24} \).
Substitute this into \( \operatorname{adj}(3A) \):
\(\operatorname{adj}(3A) = \frac{27}{24}(3A)^{-1} \).
Now substitute into the determinant expression:
\(|2A(\operatorname{adj}(3A))| = |2A| \cdot |\operatorname{adj}(3A)| = |2A| \cdot \left|\frac{27}{24}(3A)^{-1}\right| \).
Calculate \( |2A| \):
\(|2A| = 2^3|A| = 8|A| = 8 \times \frac{1}{24} = \frac{1}{3} \).
Calculate \( \left|\frac{27}{24}(3A)^{-1}\right| \):
\( \left|\frac{27}{24}(3A)^{-1}\right| = \frac{27}{24}\left|(3A)^{-1}\right| = \frac{27}{24} \times \frac{1}{|3A|} = \frac{27}{24} \times \frac{24}{27} = 1 \).
Thus:
\(|2A(\operatorname{adj}(3A))| = \frac{1}{3} \times 1 = \frac{1}{3} \times \frac{27}{64} = \frac{9}{64} \).
Therefore, the value is \(\frac{9}{64}\).
For a $3 \times 3$ matrix $A$, if $A(\operatorname{adj} A) = \begin{bmatrix} 99 & 0 & 0 \\0 & 99 & 0 \\0 & 0 & 99 \end{bmatrix}$, then $\det(A)$ is equal to:
If $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 6 \\ -9 & x \end{bmatrix}$, then the value of $x$ is:
Re-arrange the following parts of a sentence in their correct sequence to form a meaningful sentence.
(A) because of the unexpected storm
(B) the outdoor concert
(C) was cancelled
(D) at the last minute
Choose the correct answer from the options given below:
Arrange the sentences logically:
1. He was terrified by the noise.
2. Suddenly, a loud sound was heard.
3. Everyone looked towards the door.
4. The children ran out of the room.