Step 1: Use the cross product formula
The cross product of two vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) is given by: \[ \overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & \alpha \\ 1 & -2 & 4 \end{vmatrix} \]
Step 2: Compute the determinant
Expanding along the first row: \[ \overrightarrow{a} \times \overrightarrow{b} = \hat{i} \begin{vmatrix} -3 & \alpha \\ -2 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & \alpha \\ 1 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ 1 & -2 \end{vmatrix} \] Computing the determinants:
\[ \begin{vmatrix} -3 & \alpha \\ -2 & 4 \end{vmatrix} = (-3)(4) - (\alpha)(-2) = -12 + 2\alpha \] \[ \begin{vmatrix} 1 & \alpha \\ 1 & 4 \end{vmatrix} = (1)(4) - (\alpha)(1) = 4 - \alpha \] \[ \begin{vmatrix} 1 & -3 \\ 1 & -2 \end{vmatrix} = (1)(-2) - (-3)(1) = -2 + 3 = 1 \]
Step 3: Substitute values and compare
\[ \overrightarrow{a} \times \overrightarrow{b} = (-12 + 2\alpha) \hat{i} - (4 - \alpha) \hat{j} + (1) \hat{k} \] Given that: \[ \overrightarrow{a} \times \overrightarrow{b} = -2\hat{i} + \hat{j} + \beta\hat{k} \] Comparing the \( \hat{k} \)-components: \[ 1 = \beta \]
Final Answer: \( \beta \) is 1.