We are given the vectors a=i^−3j^+3k^,b=2i^+j^−3k^. We need to find the value of (a×b)⋅b. First, compute the cross product a×b. Using the determinant form for the cross product: a×b=i^12j^−31k^3−3. Expanding the determinant: a×b=i^−313−3−j^123−3+k^12−31. Calculating the 2x2 determinants: a×b=i^((−3)(−3)−(3)(1))−j^((1)(−3)−(3)(2))+k^((1)(1)−(−3)(2)).a×b=i^(9−3)−j^(−3−6)+k^(1+6).a×b=i^(6)−j^(−9)+k^(7).a×b=6i^+9j^+7k^. Now, compute the dot product (a×b)⋅b: (a×b)⋅b=(6i^+9j^+7k^)⋅(2i^+j^−3k^). Using the distributive property of the dot product: (a×b)⋅b=(6)(2)+(9)(1)+(7)(−3).(a×b)⋅b=12+9−21=0. Thus, the value of (a×b)⋅b is 0.