Question:

If aˉ=i^3j^+3k^\bar{a}=\hat{i}-3\hat{j}+3\hat{k} and bˉ=2i^+j^3k^\bar{b}=2\hat{i}+\hat{j}-3\hat{k}, then the value of (aˉ×bˉ)bˉ(\bar a\times\bar b)\cdot\bar b is equal to

Updated On: Apr 4, 2025
  • 3
  • -3
  • 7
  • -7
  • 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is

Solution and Explanation

We are given the vectors a=i^3j^+3k^,b=2i^+j^3k^. \mathbf{a} = \hat{i} - 3\hat{j} + 3\hat{k}, \quad \mathbf{b} = 2\hat{i} + \hat{j} - 3\hat{k}. We need to find the value of (a×b)b (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} . First, compute the cross product a×b \mathbf{a} \times \mathbf{b} . Using the determinant form for the cross product: a×b=i^j^k^133213. \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 3 \\ 2 & 1 & -3 \end{vmatrix}. Expanding the determinant: a×b=i^3313j^1323+k^1321. \mathbf{a} \times \mathbf{b} = \hat{i} \begin{vmatrix} -3 & 3 \\ 1 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 2 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix}. Calculating the 2x2 determinants: a×b=i^((3)(3)(3)(1))j^((1)(3)(3)(2))+k^((1)(1)(3)(2)). \mathbf{a} \times \mathbf{b} = \hat{i} \left( (-3)(-3) - (3)(1) \right) - \hat{j} \left( (1)(-3) - (3)(2) \right) + \hat{k} \left( (1)(1) - (-3)(2) \right). a×b=i^(93)j^(36)+k^(1+6). \mathbf{a} \times \mathbf{b} = \hat{i} \left( 9 - 3 \right) - \hat{j} \left( -3 - 6 \right) + \hat{k} \left( 1 + 6 \right). a×b=i^(6)j^(9)+k^(7). \mathbf{a} \times \mathbf{b} = \hat{i}(6) - \hat{j}(-9) + \hat{k}(7). a×b=6i^+9j^+7k^. \mathbf{a} \times \mathbf{b} = 6\hat{i} + 9\hat{j} + 7\hat{k}. Now, compute the dot product (a×b)b (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} : (a×b)b=(6i^+9j^+7k^)(2i^+j^3k^). (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (6\hat{i} + 9\hat{j} + 7\hat{k}) \cdot (2\hat{i} + \hat{j} - 3\hat{k}). Using the distributive property of the dot product: (a×b)b=(6)(2)+(9)(1)+(7)(3). (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (6)(2) + (9)(1) + (7)(-3). (a×b)b=12+921=0. (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 12 + 9 - 21 = 0. Thus, the value of (a×b)b (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} is 0 0 .

The correct option is (E) : 00

Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions