A deck of 52 cards has 26 red cards (13 diamonds and 13 hearts). Each suit has 3 face cards (Jack, Queen, and King). Hence, the total number of red face cards is: \[ 3 (\text{face cards in hearts}) + 3 (\text{face cards in diamonds}) = 6 \] Thus, the probability of selecting a red face card is: \[ \text{Probability} = \dfrac{\text{Number of red face cards}}{\text{Total number of cards}} = \dfrac{6}{52} = \dfrac{3}{26} \]
The correct option is (A): \(\frac{3}{26}\)
If A is any event associated with sample space and if E1, E2, E3 are mutually exclusive and exhaustive events. Then which of the following are true?
(A) \(P(A) = P(E_1)P(E_1|A) + P(E_2)P(E_2|A) + P(E_3)P(E_3|A)\)
(B) \(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + P(A|E_3)P(E_3)\)
(C) \(P(E_i|A) = \frac{P(A|E_i)P(E_i)}{\sum_{j=1}^{3} P(A|E_j)P(E_j)}, \; i=1,2,3\)
(D) \(P(A|E_i) = \frac{P(E_i|A)P(E_i)}{\sum_{j=1}^{3} P(E_i|A)P(E_j)}, \; i=1,2,3\)
Choose the correct answer from the options given below: