A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is:
For the reaction:
$3Fe_{(s)} + 2O_2{(g)} \rightarrow Fe_3O_4{(s)}$
$\Delta H = -1650\,\text{kJ mol}^{-1}$, $\Delta S = -600\,\text{J K}^{-1} \text{mol}^{-1}$ at $300\,\text{K}$. What is the value of free energy change for the reaction at $300\,\text{K}$?
In mechanics, the universal force of attraction acting between all matter is known as Gravity, also called gravitation, . It is the weakest known force in nature.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
On combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2
The dimension formula of G is [M-1L3T-2].