The escape velocity $V_e$ is the minimum speed needed to escape Earth's gravitational field, given as 11.2 km s$^{-1}$.
The initial velocity of the body is $\sqrt{5}V_e = \sqrt{5} \times 11.2$.
Using conservation of energy, the total mechanical energy at the surface is: \[ E = \frac{1}{2}m (\sqrt{5}V_e)^2 - \frac{GMm}{R} = \frac{1}{2}m (5V_e^2) - \frac{GMm}{R} \] Since $V_e = \sqrt{\frac{2GM}{R}}$, we have $\frac{GM}{R} = \frac{V_e^2}{2}$. Thus: \[ E = \frac{1}{2}m (5V_e^2) - m \frac{V_e^2}{2} = m \left( \frac{5V_e^2}{2} - \frac{V_e^2}{2} \right) = m \times 2V_e^2 \] At infinity, potential energy is zero, and the total energy is just kinetic: $E = \frac{1}{2}m v^2$. Equating: \[ \frac{1}{2}m v^2 = m \times 2V_e^2 \implies v^2 = 4V_e^2 \implies v = 2V_e \] \[ v = 2 \times 11.2 = 22.4 { km s}^{-1} \] Thus, the velocity when it escapes is 22.4 km s$^{-1}$.