The matrix \( A \) is:
A = \(\begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix}.\)
Raise \( A \) to the power of 4:
\(A^4 = \begin{bmatrix} (-k)^4 & 0 \\ 0 & (-k)^4 \end{bmatrix} = \begin{bmatrix} k^4 & 0 \\ 0 & k^4 \end{bmatrix}.\)
Now, solve for \( m \) in:
\(A^4 = mA \implies \begin{bmatrix} k^4 & 0 \\ 0 & k^4 \end{bmatrix} = m \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix}.\)
Equating elements:
\(k^4 = m(-k) \implies m = \frac{k^4}{-k} = -k^3.\)
Thus, \(m = -k^3\).