To solve for \( m \) in the equation \((A^T)^4 = mA\), we start by evaluating the properties of the given matrix \( A \).
Matrix \( A \) is given by: \[ A = \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix} \]
Step 1: Transpose of Matrix \( A \)
The transpose of a diagonal matrix \( A \) is simply the matrix itself, since transposing changes component (i, j) to (j, i), both being equal for diagonal elements. Thus:
\( A^T = \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix} = A \)
Step 2: Calculating \((A^T)^4\)
Since \( A^T = A \), we have:
\((A^T)^4 = A^4\)
To compute \( A^4 \), we first need \( A^2 \):
\( A^2 = A \cdot A = \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix} \cdot \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix} = \begin{bmatrix} k^2 & 0 \\ 0 & k^2 \end{bmatrix} \)
Then, \( A^4 = A^2 \cdot A^2 \):
\( A^4 = \begin{bmatrix} k^2 & 0 \\ 0 & k^2 \end{bmatrix} \cdot \begin{bmatrix} k^2 & 0 \\ 0 & k^2 \end{bmatrix} = \begin{bmatrix} k^4 & 0 \\ 0 & k^4 \end{bmatrix} \)
Step 3: Solve for \( m \) in \((A^T)^4 = mA\)
We equate \((A^T)^4\) and \( mA \):
\( \begin{bmatrix} k^4 & 0 \\ 0 & k^4 \end{bmatrix} = m \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix} \)
This gives two scalar equations:
\( k^4 = m(-k) \)
Simplifying, we get:
\( k^4 = -mk \)
Solving for \( m \), we divide both sides by \(-k\):
\( m = -k^3 \)
Thus, the value of \( m \) is \(-k^3\).
The matrix \( A \) is:
A = \(\begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix}.\)
Raise \( A \) to the power of 4:
\(A^4 = \begin{bmatrix} (-k)^4 & 0 \\ 0 & (-k)^4 \end{bmatrix} = \begin{bmatrix} k^4 & 0 \\ 0 & k^4 \end{bmatrix}.\)
Now, solve for \( m \) in:
\(A^4 = mA \implies \begin{bmatrix} k^4 & 0 \\ 0 & k^4 \end{bmatrix} = m \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix}.\)
Equating elements:
\(k^4 = m(-k) \implies m = \frac{k^4}{-k} = -k^3.\)
Thus, \(m = -k^3\).