First, compute the inverses of A and B:
The determinant of A is:
\[ \text{det}(A) = (2)(-4) - (3)(1) = -8 - 3 = -11. \]
The inverse of A is:
\[ A^{-1} = \frac{1}{-11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}. \]
The determinant of B is:
\[ \text{det}(B) = (1)(3) - (-2)(-1) = 3 - 2 = 1. \]
The inverse of B is:
\[ B^{-1} = \frac{1}{1} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}. \]
Now compute \( B^{-1}A^{-1} \):
\[ B^{-1}A^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{11} \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}. \]
Perform the matrix multiplication:
\[ \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} (3)(4) + (2)(1) & (3)(3) + (2)(-2) \\ (1)(4) + (1)(1) & (1)(3) + (1)(-2) \end{bmatrix}. \]
\[ = \begin{bmatrix} 12 + 2 & 9 - 4 \\ 4 + 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}. \]
Thus:
\[ B^{-1}A^{-1} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}. \]
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |