
To find \( B^{-1} A^{-1} \), we need to first find the inverses of matrices \( A \) and \( B \). The inverse of a 2x2 matrix \( M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ M^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \], provided that \( ad-bc \neq 0 \).
Step 1: Find \( A^{-1} \)
Matrix \( A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \).
The determinant of \( A \) is: \[ \text{det}(A) = (2)(-4) - (3)(1) = -8 - 3 = -11 \]
\( A^{-1} = \frac{1}{-11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix} \).
Step 2: Find \( B^{-1} \)
Matrix \( B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \).
The determinant of \( B \) is: \[ \text{det}(B) = (1)(3) - (-2)(-1) = 3 - 2 = 1 \]
\( B^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \).
Step 3: Calculate \( B^{-1} A^{-1} \)
Now multiply \( B^{-1} \) and \( A^{-1} \): \[ B^{-1} A^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ \frac{1}{11} & -\frac{2}{11} \end{bmatrix} \]
Using matrix multiplication:
\[ B^{-1} A^{-1} = \begin{bmatrix} (3 \times \frac{4}{11}) + (2 \times \frac{1}{11}) & (3 \times \frac{3}{11}) + (2 \times -\frac{2}{11}) \\ (1 \times \frac{4}{11}) + (1 \times \frac{1}{11}) & (1 \times \frac{3}{11}) + (1 \times -\frac{2}{11}) \end{bmatrix} \]
\[ = \begin{bmatrix} \frac{12}{11} + \frac{2}{11} & \frac{9}{11} - \frac{4}{11} \\ \frac{4}{11} + \frac{1}{11} & \frac{3}{11} - \frac{2}{11} \end{bmatrix} = \begin{bmatrix} \frac{14}{11} & \frac{5}{11} \\ \frac{5}{11} & \frac{1}{11} \end{bmatrix} \]
This simplifies to: \(\displaystyle \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix} \).
The correct answer is: \( \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix} \).

First, compute the inverses of A and B:
The determinant of A is:
\[ \text{det}(A) = (2)(-4) - (3)(1) = -8 - 3 = -11. \]
The inverse of A is:
\[ A^{-1} = \frac{1}{-11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}. \]
The determinant of B is:
\[ \text{det}(B) = (1)(3) - (-2)(-1) = 3 - 2 = 1. \]
The inverse of B is:
\[ B^{-1} = \frac{1}{1} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}. \]
Now compute \( B^{-1}A^{-1} \):
\[ B^{-1}A^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{11} \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}. \]
Perform the matrix multiplication:
\[ \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} (3)(4) + (2)(1) & (3)(3) + (2)(-2) \\ (1)(4) + (1)(1) & (1)(3) + (1)(-2) \end{bmatrix}. \]
\[ = \begin{bmatrix} 12 + 2 & 9 - 4 \\ 4 + 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}. \]
Thus:
\[ B^{-1}A^{-1} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}. \]
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81. 
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
What comes next in the series? 
\(2, 6, 12, 20, 30, \ ?\)