Question:

If \[ A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \] then \( A^{-1} \) is:

Show Hint

For a diagonal matrix \( A = {diag}(a_1, a_2, \dots, a_n) \), the inverse is \( A^{-1} = {diag}\left(\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}\right) \), provided \( a_i \neq 0 \).
Updated On: Jan 29, 2025
  • \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix} \]
  • \[ 30 \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix} \]
  • \[ \frac{1}{30} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \]
  • \[ \frac{1}{30} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The inverse of a diagonal matrix is obtained by taking the reciprocal of the diagonal elements. For

\[ A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \]

the diagonal elements are 2, 3, and 5. Thus:

\[ A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}. \]

This matches option (A).

Final Answer: \[ \boxed{(A)} \]
Was this answer helpful?
0
0

Top Questions on Matrix

View More Questions