Question:

If \(A = \begin{bmatrix} 1 & 8  0 & 1 \end{bmatrix}\), then \(A^8 =\)

Show Hint

For matrices of this special form, raising them to a power simply involves multiplying the off-diagonal element by the power of the exponent.
Updated On: Apr 27, 2025
  • \(\begin{bmatrix} 1 & 64  0 & 1 \end{bmatrix}\)

  • \(\begin{bmatrix} 1 & 32  0 & 1 \end{bmatrix}\)

  • \(\begin{bmatrix} 1 & 16  0 & 1 \end{bmatrix}\)

  • \(\begin{bmatrix} 1 & 8  0 & 1 \end{bmatrix}\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

For the matrix \(A = \begin{bmatrix} 1 & 8  0 & 1 \end{bmatrix}\), notice that this is a special form of a matrix.
We can calculate the power of the matrix by recognizing the structure of the matrix and multiplying it repeatedly.
When we compute \( A^8 \), we get: \([ A^8 = \begin{bmatrix} 1 & 8  0 & 1 \end{bmatrix}^8\)
\(\begin{bmatrix} 1 & 8 \times 8  0 & 1 \end{bmatrix}\)
=\( \begin{bmatrix} 1 & 64  0 & 1 \end{bmatrix}\)

Was this answer helpful?
0
0