If \(A = \begin{bmatrix} 1 & 8 0 & 1 \end{bmatrix}\), then \(A^8 =\)
\(\begin{bmatrix} 1 & 64 0 & 1 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 32 0 & 1 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 16 0 & 1 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 8 0 & 1 \end{bmatrix}\)
For the matrix \(A = \begin{bmatrix} 1 & 8 0 & 1 \end{bmatrix}\), notice that this is a special form of a matrix.
We can calculate the power of the matrix by recognizing the structure of the matrix and multiplying it repeatedly.
When we compute \( A^8 \), we get: \([ A^8 = \begin{bmatrix} 1 & 8 0 & 1 \end{bmatrix}^8\)
= \(\begin{bmatrix} 1 & 8 \times 8 0 & 1 \end{bmatrix}\)
=\( \begin{bmatrix} 1 & 64 0 & 1 \end{bmatrix}\)
For any real symmetric matrix \( A \), the transpose of \( A \) is ________ .
Fill in the blanks with suitable word ……… man, who knocked at ……….. door is now here.
Fill in the blanks with suitable word …………._ bird in …………. hand is worth two in the bush.
Fill in the blank with suitable word:
It is …………… walking on ice.