We are given the matrix:
\[
A = \begin{bmatrix} 1 & 2 & x
4 & -1 & 7
2 & 4 & -6 \end{bmatrix}
\]
Step 1: Perform the row operation \( R_2 \leftarrow R_2 - 4R_1 \):
\[
R_2 = [4, -1, 7] - 4 \cdot [1, 2, x] = [0, -9, 7 - 4x]
\]
Step 2: Perform the row operation \( R_3 \leftarrow R_3 - 2R_1 \):
\[
R_3 = [2, 4, -6] - 2 \cdot [1, 2, x] = [0, 0, -6 - 2x]
\]
So the matrix becomes:
\[
\begin{bmatrix}
1 & 2 & x \\
0 & -9 & 7 - 4x \\
0 & 0 & -6 - 2x
\end{bmatrix}
\]
Step 3: For the matrix to have rank 2, one row must be a linear combination of others or a zero row. That is, third row must be zero:
\[
-6 - 2x = 0
\Rightarrow x = -3
\]
Therefore, the value of \( x \) is:
\[
\boxed{-3}
\]