If $a,b,c$ are distinct positive real numbers and $a^2+b^2+c^2=1$, then $ab+bc+ca$ is
any real number
Use the identity \[ (a-b)^2+(b-c)^2+(c-a)^2 =2\,(a^2+b^2+c^2)-2\,(ab+bc+ca)\ \ge 0. \] Hence \(ab+bc+ca \le a^2+b^2+c^2=1\).
Equality holds only when \(a=b=c\), which is impossible here (they are distinct). Therefore \[ ab+bc+ca < 1. \]