Step 1 (List all whole-number factor pairs of 121).
\(121 = 11 \times 11 = 1 \times 121\).
So ordered pairs \((a,(b)\) that satisfy \(ab=121\) are: \((1,121),\ (11,11),\ (121,1)\).
Step 2 (Simplify the given expression).
\[
(a-1)b + 1 = ab - b + 1.
\]
Since \(ab=121\), this becomes
\[
121 - b + 1 = 122 - b.
\]
Step 3 (Evaluate for each admissible pair).
\[
\begin{aligned}
(a,(b)=(1,121) & 122 - b = 122 - 121 = 1,
(a,(b)=(11,11) & 122 - b = 122 - 11 = 111,
(a,(b)=(121,1) & 122 - b = 122 - 1 = 121.
\end{aligned}
\]
Hence the value depends on which pair is chosen.
Step 4 (Exam convention).
Many exam sets intend the non-unit} factorization of \(121\) (i.e., both factors \(>1\)), which forces \(a=b=11\).
Under this common convention, the value is \(111\).
\[
{122 - b \ \text{(general)}}
\qquad
{111 \ \text{if } a=b=11}
\]