Question:

If \(\vec{a}\) and \(\vec{b}\) are two non zero vectors such that \(|\vec{a}|\)=10, \(|\vec{b}|=2\) and \(\vec{a}.\vec{b}=12\), then value of \(|\vec{a}\times\vec{b}|\) is :

Updated On: May 11, 2025
  • 5
  • 10
  • 14
  • 16
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To find the magnitude of the cross product \( |\vec{a}\times\vec{b}| \), we use the formula \( |\vec{a}\times\vec{b}| = |\vec{a}||\vec{b}|\sin\theta \), where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \). We are given:
  • \(|\vec{a}|=10\)
  • \(|\vec{b}|=2\)
  • \(\vec{a}\cdot\vec{b}=12\)
We can find \(\cos\theta\) using the dot product formula: \(\vec{a}\cdot\vec{b} = |\vec{a}||\vec{b}|\cos\theta\).
Substituting the given values, we have:
\(12 = 10 \times 2 \times \cos\theta\)
\(\cos\theta = \frac{12}{20} = \frac{3}{5}\)
We know \(\sin^2\theta + \cos^2\theta = 1\), so:
\(\sin^2\theta = 1 - \cos^2\theta\)
\(\sin^2\theta = 1 - \left(\frac{3}{5}\right)^2\)
\(\sin^2\theta = 1 - \frac{9}{25} = \frac{16}{25}\)
\(\sin\theta = \sqrt{\frac{16}{25}} = \frac{4}{5}\)
Now, calculate the cross product magnitude:
\(|\vec{a}\times\vec{b}| = 10 \times 2 \times \frac{4}{5}\)
\(|\vec{a}\times\vec{b}| = 20 \times \frac{4}{5}\)
\(|\vec{a}\times\vec{b}| = 16\)
Thus, the value of \(|\vec{a}\times\vec{b}|\) is 16.
Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions