For the system of equations to be consistent, the determinant of the coefficient matrix must be zero. The coefficient determinant \( \Delta \) is given by:
\[\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 4 \\ 1 & 5 & 10 \end{vmatrix}\]Expanding along the first row:
\[\Delta = 1 \begin{vmatrix} 3 & 4 \\ 5 & 10 \end{vmatrix} - 2 \begin{vmatrix} 1 & 4 \\ 1 & 10 \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix}\]\[ = 1(30 - 20) - 2(10 - 4) + 1(5 - 3) \] \[ = 10 - 12 + 2 = 0 \] Since \( \Delta = 0 \), the system is consistent. Now, solving for \( k \), we set up the determinant \( \Delta_1 \):
\[\Delta_1 = \begin{vmatrix} k & 2 & 1 \\ 1 & 3 & 4 \\ k^2 & 5 & 10 \end{vmatrix} = 0\]Expanding along the first row:
\[\Delta_1 = k \begin{vmatrix} 3 & 4 \\ 5 & 10 \end{vmatrix} - 2 \begin{vmatrix} 1 & 4 \\ k^2 & 10 \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 \\ k^2 & 5 \end{vmatrix} = 0\]Solving, we obtain the quadratic equation: \[ (k - 2)(k - 1) = 0 \] \[ \Rightarrow k = 2, 1 \] Thus, the real values of \( k \) are \( A = 2 \) and \( B = 1 \). \[ A + B = 2 + 1 = 3 \]
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______