For the system of equations to be consistent, the determinant of the coefficient matrix must be zero. The coefficient determinant \( \Delta \) is given by:
\[\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 4 \\ 1 & 5 & 10 \end{vmatrix}\]Expanding along the first row:
\[\Delta = 1 \begin{vmatrix} 3 & 4 \\ 5 & 10 \end{vmatrix} - 2 \begin{vmatrix} 1 & 4 \\ 1 & 10 \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix}\]\[ = 1(30 - 20) - 2(10 - 4) + 1(5 - 3) \] \[ = 10 - 12 + 2 = 0 \] Since \( \Delta = 0 \), the system is consistent. Now, solving for \( k \), we set up the determinant \( \Delta_1 \):
\[\Delta_1 = \begin{vmatrix} k & 2 & 1 \\ 1 & 3 & 4 \\ k^2 & 5 & 10 \end{vmatrix} = 0\]Expanding along the first row:
\[\Delta_1 = k \begin{vmatrix} 3 & 4 \\ 5 & 10 \end{vmatrix} - 2 \begin{vmatrix} 1 & 4 \\ k^2 & 10 \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 \\ k^2 & 5 \end{vmatrix} = 0\]Solving, we obtain the quadratic equation: \[ (k - 2)(k - 1) = 0 \] \[ \Rightarrow k = 2, 1 \] Thus, the real values of \( k \) are \( A = 2 \) and \( B = 1 \). \[ A + B = 2 + 1 = 3 \]