Step 1: The coefficient of $x^n$ in $(1 + x)^2n$ is given by the binomial coefficient:
\[
A = \binom2nn
\]
Step 2: The coefficient of $x^n$ in $(1 + x)^2n - 1$ is given by:
\[
B = \binom2n - 1n
\]
Step 3: Use the binomial coefficient identity:
\[
\binom2nn = \frac2nn \binom2n - 1n - 1 = 2 \binom2n - 1n - 1
\]
Step 4: Relate $\binom2n - 1n$ and $\binom2n - 1n - 1$:
From the symmetry property:
\[
\binom2n - 1n - 1 = \binom2n - 1n
\]
Therefore:
\[
A = 2 \binom2n - 1n = 2B
\]
Step 5: Conclusion:
\[
A = 2B
\]
Thus, the correct answer is $\mathbfA = 2B$.