Let \( \mathbf{a} = (\alpha, 3, 0) \) and \( \mathbf{b} = (1, 0, 0) \). The dot product formula is given by: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \] where \( \theta \) is the angle between the vectors. We are given that \( \theta = \frac{\pi}{4} \), so \( \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \). ### Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \) \[ \mathbf{a} \cdot \mathbf{b} = \alpha \cdot 1 + 3 \cdot 0 + 0 \cdot 0 = \alpha \] ### Step 2: Calculate the magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \) \[ |\mathbf{a}| = \sqrt{\alpha^2 + 3^2 + 0^2} = \sqrt{\alpha^2 + 9} \] \[ |\mathbf{b}| = \sqrt{1^2 + 0^2 + 0^2} = 1 \] ### Step 3: Use the dot product formula Substitute the values into the dot product formula: \[ \alpha = |\mathbf{a}| \cdot 1 \cdot \cos \frac{\pi}{4} \] \[ \alpha = \sqrt{\alpha^2 + 9} \cdot \frac{1}{\sqrt{2}} \] Multiply both sides by \( \sqrt{2} \): \[ \alpha \sqrt{2} = \sqrt{\alpha^2 + 9} \] ### Step 4: Square both sides \[ 2\alpha^2 = \alpha^2 + 9 \] Simplify the equation: \[ \alpha^2 = 9 \] Thus: \[ \alpha = 3 \]
The correct option is (C) : \(3\)
We are given that the position vector of point (a, 3, 0) is \(\bar{a} = a\hat{i} + 3\hat{j} + 0\hat{k}\) and the position vector of point (1, 0, 0) is \(\bar{b} = 1\hat{i} + 0\hat{j} + 0\hat{k}\).
The angle between the vectors \(\bar{a}\) and \(\bar{b}\) is \(\frac{\pi}{4}\).
We know that \(\bar{a} \cdot \bar{b} = |\bar{a}||\bar{b}|\cos\theta\), where \(\theta\) is the angle between \(\bar{a}\) and \(\bar{b}\).
First, let's find \(\bar{a} \cdot \bar{b}\):
\(\bar{a} \cdot \bar{b} = (a\hat{i} + 3\hat{j} + 0\hat{k}) \cdot (1\hat{i} + 0\hat{j} + 0\hat{k}) = a(1) + 3(0) + 0(0) = a\)
Now, let's find \(|\bar{a}|\) and \(|\bar{b}|\):
\(|\bar{a}| = \sqrt{a^2 + 3^2 + 0^2} = \sqrt{a^2 + 9}\)
\(|\bar{b}| = \sqrt{1^2 + 0^2 + 0^2} = \sqrt{1} = 1\)
We are given that \(\theta = \frac{\pi}{4}\), so \(\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\).
Therefore, we have:
\(a = \sqrt{a^2 + 9} \cdot 1 \cdot \frac{\sqrt{2}}{2}\)
\(a = \sqrt{a^2 + 9} \cdot \frac{\sqrt{2}}{2}\)
Multiplying by \(\frac{2}{\sqrt{2}}\) we get \(\sqrt{2} a = \sqrt{a^2 + 9}\).
Squaring both sides, we have:
\(2a^2 = a^2 + 9\)
\(a^2 = 9\)
\(a = \pm 3\)
Since, we squared it lets check it
Substituting into original equation
\(a = \sqrt{a^2 + 9} \cdot \frac{\sqrt{2}}{2}\)
If a = 3
\(3 = \sqrt{3^2 + 9} \cdot \frac{\sqrt{2}}{2} = \sqrt{18} \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2} \frac{\sqrt{2}}{2} = 3\)
If a = -3
\(-3 = \sqrt{(-3)^2 + 9} \cdot \frac{\sqrt{2}}{2} = \sqrt{18} \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2} \frac{\sqrt{2}}{2} = 3\)
Since we are given that b = (1, 0, 0) if we use a = -3 the angle between vectors will be obtuse since inner product will be negative violating that \(\theta = \frac{\pi}{4}\) Thus a = 3;