Step 1: Use the change of base formula
\[\log_x y = \frac{\log y}{\log x},\] where \(\log\) can be any common base (e.g., natural log).
Step 2: Rewrite the determinant entries using this formula:
\[ \begin{vmatrix} \frac{\log a}{\log a} & \frac{\log b}{\log a} & \frac{\log c}{\log a} \\ \frac{\log a}{\log b} & \frac{\log b}{\log b} & \frac{\log c}{\log b} \\ \frac{\log a}{\log c} & \frac{\log b}{\log c} & \frac{\log c}{\log c} \end{vmatrix} = \begin{vmatrix} 1 & \frac{\log b}{\log a} & \frac{\log c}{\log a} \\ \frac{\log a}{\log b} & 1 & \frac{\log c}{\log b} \\ \frac{\log a}{\log c} & \frac{\log b}{\log c} & 1 \end{vmatrix}. \]
Step 3: Let
\[x = \log a, \quad y = \log b, \quad z = \log c.\]
The matrix becomes
\[
\begin{vmatrix}
1 & \frac{y}{x} & \frac{z}{x} \\
\frac{x}{y} & 1 & \frac{z}{y} \\
\frac{x}{z} & \frac{y}{z} & 1
\end{vmatrix}.
\]
Step 4: Multiply rows by \(x, y, z\) respectively (scaling determinant by \(xyz\))
\[ xyz \times D = \begin{vmatrix} x & y & z \\ x & y & z \\ x & y & z \end{vmatrix}. \]
Step 5: Evaluate the determinant
Since all rows are identical, \[ \det = 0. \]
Step 6: Conclude the value of original determinant
Because \(x,y,z \neq 0\), \[ D = 0. \]
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to