Step 1: Use the change of base formula
\[\log_x y = \frac{\log y}{\log x},\] where \(\log\) can be any common base (e.g., natural log).
Step 2: Rewrite the determinant entries using this formula:
\[ \begin{vmatrix} \frac{\log a}{\log a} & \frac{\log b}{\log a} & \frac{\log c}{\log a} \\ \frac{\log a}{\log b} & \frac{\log b}{\log b} & \frac{\log c}{\log b} \\ \frac{\log a}{\log c} & \frac{\log b}{\log c} & \frac{\log c}{\log c} \end{vmatrix} = \begin{vmatrix} 1 & \frac{\log b}{\log a} & \frac{\log c}{\log a} \\ \frac{\log a}{\log b} & 1 & \frac{\log c}{\log b} \\ \frac{\log a}{\log c} & \frac{\log b}{\log c} & 1 \end{vmatrix}. \]
Step 3: Let
\[x = \log a, \quad y = \log b, \quad z = \log c.\]
The matrix becomes
\[
\begin{vmatrix}
1 & \frac{y}{x} & \frac{z}{x} \\
\frac{x}{y} & 1 & \frac{z}{y} \\
\frac{x}{z} & \frac{y}{z} & 1
\end{vmatrix}.
\]
Step 4: Multiply rows by \(x, y, z\) respectively (scaling determinant by \(xyz\))
\[ xyz \times D = \begin{vmatrix} x & y & z \\ x & y & z \\ x & y & z \end{vmatrix}. \]
Step 5: Evaluate the determinant
Since all rows are identical, \[ \det = 0. \]
Step 6: Conclude the value of original determinant
Because \(x,y,z \neq 0\), \[ D = 0. \]