Given that line \( (a^2 - 1)x + ay + (3 - a) = 0 \) is normal to curve \( xy = 1 \).
Find slope of the normal to the curve \( xy = 1 \).
The curve’s derivative using implicit differentiation:
\[
\frac{d}{dx}(xy) = \frac{d}{dx}(1) \Rightarrow x \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}
\]
So, slope of normal = \( \frac{x}{y} \)
Compare with line in general form:
\[
(a^2 - 1)x + ay + (3 - a) = 0 \Rightarrow \text{slope} = -\frac{a^2 - 1}{a}
\]
Equating:
\[
\frac{x}{y} = -\frac{a^2 - 1}{a}
\Rightarrow a x + (a^2 - 1)y = 0
\]
Solve this system with \( xy = 1 \) to find feasible values for \( a \). From the solution, we find the values of \( a \) that make the line normal to the curve lie in the interval:
\[
a \in (-\infty, -1] \cup (0, 1]
\]