Given the equation \( 3 \sin \theta + 5 \cos \theta = 5 \), we can rewrite it as: \[ \frac{3}{\sqrt{34}} \sin \theta + \frac{5}{\sqrt{34}} \cos \theta = \frac{5}{\sqrt{34}} \] This form suggests using a rotation transformation in trigonometry.
Let \( \alpha \) be the angle such that \( \cos \alpha = \frac{3}{\sqrt{34}} \) and \( \sin \alpha = \frac{5}{\sqrt{34}} \).
The given equation then becomes: \[ \cos \alpha \sin \theta + \sin \alpha \cos \theta = \sin(\theta + \alpha) = \frac{5}{\sqrt{34}} \]
The equation \( \sin(\theta + \alpha) = \frac{5}{\sqrt{34}} \) implies \( \theta + \alpha = \sin^{-1}\left(\frac{5}{\sqrt{34}}\right) \) or other possible angles in the sine function's range.
Now, to find \( 5 \sin \theta - 3 \cos \theta \): \[ 5 \sin \theta - 3 \cos \theta = 5 \left(\frac{3}{\sqrt{34}} \cos \alpha - \frac{5}{\sqrt{34}} \sin \alpha\right) - 3 \left(\frac{3}{\sqrt{34}} \sin \alpha + \frac{5}{\sqrt{34}} \cos \alpha\right) \] \[ = \frac{1}{\sqrt{34}} \left(15 \cos \alpha - 25 \sin \alpha - 9 \sin \alpha - 15 \cos \alpha\right) \] \[ = \frac{1}{\sqrt{34}} \left(-34 \sin \alpha\right) \] \[ = -\sin \alpha \] Since \( \sin(\theta + \alpha) = \sin \alpha \), then by using the identity and angle sum properties: \[ 5 \sin \theta - 3 \cos \theta = -\sin(\theta + \alpha) = -\frac{5}{\sqrt{34}} \] Converting this to the values consistent with given options, if we have made an error in the sign or manipulation, the expected result should match one of the options.