Given the equation \( 3 \sin \theta + 5 \cos \theta = 5 \), we can rewrite it as: \[ \frac{3}{\sqrt{34}} \sin \theta + \frac{5}{\sqrt{34}} \cos \theta = \frac{5}{\sqrt{34}} \] This form suggests using a rotation transformation in trigonometry.
Let \( \alpha \) be the angle such that \( \cos \alpha = \frac{3}{\sqrt{34}} \) and \( \sin \alpha = \frac{5}{\sqrt{34}} \).
The given equation then becomes: \[ \cos \alpha \sin \theta + \sin \alpha \cos \theta = \sin(\theta + \alpha) = \frac{5}{\sqrt{34}} \]
The equation \( \sin(\theta + \alpha) = \frac{5}{\sqrt{34}} \) implies \( \theta + \alpha = \sin^{-1}\left(\frac{5}{\sqrt{34}}\right) \) or other possible angles in the sine function's range.
Now, to find \( 5 \sin \theta - 3 \cos \theta \): \[ 5 \sin \theta - 3 \cos \theta = 5 \left(\frac{3}{\sqrt{34}} \cos \alpha - \frac{5}{\sqrt{34}} \sin \alpha\right) - 3 \left(\frac{3}{\sqrt{34}} \sin \alpha + \frac{5}{\sqrt{34}} \cos \alpha\right) \] \[ = \frac{1}{\sqrt{34}} \left(15 \cos \alpha - 25 \sin \alpha - 9 \sin \alpha - 15 \cos \alpha\right) \] \[ = \frac{1}{\sqrt{34}} \left(-34 \sin \alpha\right) \] \[ = -\sin \alpha \] Since \( \sin(\theta + \alpha) = \sin \alpha \), then by using the identity and angle sum properties: \[ 5 \sin \theta - 3 \cos \theta = -\sin(\theta + \alpha) = -\frac{5}{\sqrt{34}} \] Converting this to the values consistent with given options, if we have made an error in the sign or manipulation, the expected result should match one of the options.
Which letter replaces the question mark? A, D, G, J, M, ?