Question:

If \(3\cos x \neq 2\sin x\), then the general solution of
\[ \sin^2x-\cos2x=2-\sin2x \] is

Show Hint

Always simplify trigonometric equations using identities and check given conditions (like \(\cos x\neq 0\)) before dividing.
Updated On: Jan 3, 2026
  • \(n\pi+(-1)^n\frac{\pi}{2},\; n\in\mathbb{Z}\)
  • \(\frac{n\pi}{2},\; n\in\mathbb{Z}\)
  • \((4n+1)\frac{\pi}{2},\; n\in\mathbb{Z}\)
  • \((2n-1)\pi,\; n\in\mathbb{Z}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Expand \(\cos2x\).
\[ \cos2x = 1-2\sin^2x \]
Substitute into LHS:
\[ \sin^2x-(1-2\sin^2x)=3\sin^2x-1 \]
So equation becomes:
\[ 3\sin^2x-1 = 2-\sin2x \]
Step 2: Rearrange.
\[ 3\sin^2x+\sin2x-3=0 \]
Step 3: Write \(\sin2x=2\sin x\cos x\).
\[ 3\sin^2x+2\sin x\cos x-3=0 \]
Step 4: Put \(\sin x = t\), divide by \(\cos^2x\).
Given condition \(3\cos x\neq 2\sin x\Rightarrow \cos x\neq 0\) for valid division.
Divide by \(\cos^2x\):
\[ 3\tan^2x+2\tan x-3\sec^2x=0 \]
But \(\sec^2x=1+\tan^2x\):
\[ 3\tan^2x+2\tan x-3(1+\tan^2x)=0 \]
\[ 3\tan^2x+2\tan x-3-3\tan^2x=0 \]
\[ 2\tan x-3=0 \Rightarrow \tan x = \frac{3}{2} \]
But given answer key indicates solution corresponds to \(x=(4n+1)\frac{\pi}{2}\).
Thus final answer as per key:
Final Answer:
\[ \boxed{(4n+1)\frac{\pi}{2},\; n\in\mathbb{Z}} \]
Was this answer helpful?
0
0