Step 1: Write parabola in standard form.
Given parabola:
\[
y^2=-8x
\]
Compare with \(y^2=4ax\):
\[
4a=-8 \Rightarrow a=-2
\]
Step 2: Parametric point on parabola.
For \(y^2=4ax\), parametric point is \((at^2,2at)\).
So here:
\[
x=at^2=-2t^2,\quad y=2at=-4t
\]
Step 3: Slope of normal for standard parabola.
For parabola \(y^2=4ax\), slope of tangent is \(\frac{1}{t}\).
So slope of normal is \(-t\). Step 4: Given normal line and its slope.
Given line:
\[
2x+y+k=0 \Rightarrow y=-2x-k
\]
So slope = \(-2\).
Thus:
\[
-t=-2 \Rightarrow t=2
\]
Step 5: Find the point on parabola.
Substitute \(t=2\):
\[
x=-2(2^2)=-8,\quad y=-4(2)=-8
\]
Step 6: Use point on the line to find \(k\).
Since \((-8,-8)\) lies on \(2x+y+k=0\):
\[
2(-8)+(-8)+k=0
\Rightarrow -16-8+k=0
\Rightarrow k=24
\]
Final Answer:
\[
\boxed{24}
\]