$(2x^2 - x - 1)^5 = a_0 + a_1x + a_2x^2 + ... + a_{10}x^{10}$
Put $x = 1$, we get, $0 = a_0 + a_1 + a_2 + ... + a_{10} \quad ...(i)$
Put $x = - 1$, we get, $32 = a_0 - a_1 + a_2 - ... + a_{10} \quad ...(ii)$
Adding $(i)$ and $(ii)$, we get
$a_2 + a_4 + ... + a_{10} = (32/2) + 1$
$ = 16 + 1 = 17 \,\,(\because a_0 = - 1)$