Question:

If \( 12 \cot^2 \theta - 31 \csc \theta + 32 = 0 \), then the value of \( \sin \theta \) is:

Show Hint

To solve equations involving trigonometric identities, first express all terms in terms of \( \sin \theta \) or \( \cos \theta \), and then solve the resulting algebraic equation.
Updated On: Jan 12, 2026
  • \( \frac{3}{5} \) or 1
  • \( \frac{2}{3} \) or \( -\frac{2}{3} \)
  • \( \frac{4}{5} \) or \( \frac{3}{4} \)
  • \( \pm \frac{1}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Start with the given equation: \[ 12 \cot^2 \theta - 31 \csc \theta + 32 = 0. \] Use the identity \( \cot^2 \theta = \csc^2 \theta - 1 \). Substituting gives: \[ 12(\csc^2 \theta - 1) - 31 \csc \theta + 32 = 0. \] Step 2: Solve the quadratic equation for \( \csc \theta \), and use the identity \( \csc \theta = \frac{1}{\sin \theta} \) to find the possible values of \( \sin \theta \). The solution gives \( \sin \theta = \frac{3}{5} \) or 1.

Final Answer: \[ \boxed{\frac{3}{5} \text{ or } 1} \]
Was this answer helpful?
0
0