Step 1: Express the sum
\[
S = \sum_{k=0}^n \sum_{r=0}^k \binom{n}{r}
\]
Step 2: Change order of summation
Each \(\binom{n}{r}\) appears in the sums for all \(k \ge r\), so it appears \((n - r + 1)\) times.
\[
S = \sum_{r=0}^n (n - r + 1) \binom{n}{r} = \sum_{r=0}^n (n + 1 - r) \binom{n}{r}
\]
Step 3: Split sum
\[
S = (n+1) \sum_{r=0}^n \binom{n}{r} - \sum_{r=0}^n r \binom{n}{r}
\]
Step 4: Use identities
\[
\sum_{r=0}^n \binom{n}{r} = 2^n
\]
\[
\sum_{r=0}^n r \binom{n}{r} = n 2^{n-1}
\]
Step 5: Final value
\[
S = (n+1) 2^n - n 2^{n-1} = (n+1) 2^n - n 2^{n-1} = 2^{n-1} (2(n+1) - n) = 2^{n-1} (n + 2)
\]