Question:

If \( 1, \omega, \omega^2 \) are the cube roots of unity, then evaluate: \[ (2 - \omega)^2 (2 - \omega^2)^2 (2 - \omega^{10})^2 (2 - \omega^{11})^2 \]

Show Hint

Cube Roots of Unity}
Use the identity: \( 1 + \omega + \omega^2 = 0 \)
Also: \( \omega^3 = 1 \), \( \omega \cdot \omega^2 = 1 \)
Simplify high powers using modulo arithmetic
Updated On: May 19, 2025
  • \( -7^4 \)
  • \( 7^4 \)
  • \( 7^8 \)
  • \( -7^8 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Note: \( \omega^3 = 1 \Rightarrow \omega^{10} = \omega \), \( \omega^{11} = \omega^2 \) So the expression becomes: \[ [(2 - \omega)(2 - \omega^2)]^2 \cdot [(2 - \omega)(2 - \omega^2)]^2 = [(2 - \omega)(2 - \omega^2)]^4 \] Now, \[ (2 - \omega)(2 - \omega^2) = 4 - 2(\omega + \omega^2) + \omega \omega^2 = 4 - 2(-1) + 1 = 7 \] Thus the expression becomes: \[ 7^4 \]
Was this answer helpful?
0
0

Top Questions on Complex numbers

View More Questions