Question:

If \( 0.764y = 1.236x \), then what is the value of \( \left( \frac{y - x}{y + x} \right) \)?

Show Hint

When given a ratio equation, isolate the ratio and assume simple proportional values for easy substitution.
  • 0.764
  • 0.236
  • 2
  • 0.472
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given: \[ 0.764y = 1.236x \Rightarrow \frac{y}{x} = \frac{1.236}{0.764} = \frac{1236}{764} \] Divide numerator and denominator by 4: \[ \frac{1236}{4} = 309, \quad \frac{764}{4} = 191 \Rightarrow \frac{y}{x} = \frac{309}{191} \] Let \( y = 309 \), \( x = 191 \) Now compute: \[ \frac{y - x}{y + x} = \frac{309 - 191}{309 + 191} = \frac{118}{500} = \boxed{0.236} \]
Was this answer helpful?
0
0