Ideal nonreacting gases A and B are contained inside a perfectly insulated chamber, separated by a thin partition, as shown in the figure. The partition is removed, and the two gases mix till final equilibrium is reached. The change in total entropy for the process is \( \_\_ \) J/K (rounded off to 1 decimal place).

Given: Universal gas constant \( R = 8.314 \) J/(mol K), \( T_A = T_B = 273 \) K, \( P_A = P_B = 1 \) atm, \( V_B = 22.4 \) L, \( V_A = 3V_B \).
In this setup, the two gases are mixed in an adiabatic and isothermal process. Given the conditions, we can calculate the change in entropy.
Step 1: Calculate the initial and final volumes and the number of moles:
Volume of Gas A \( V_A = 3 \times 22.4 \, L = 67.2 \, L \)
Volume of Gas B \( V_B = 22.4 \, L \)
Total final volume \( V_{final} = V_A + V_B = 89.6 \, L \)
Step 2: Calculate the initial number of moles for each gas using \( PV = nRT \):
Number of moles of Gas A \( n_A = \frac{P \times V_A}{R \times T} \)
Number of moles of Gas B \( n_B = \frac{P \times V_B}{R \times T} \)
Step 3: Calculate the change in entropy for each gas: \[ \Delta S_A = n_A \times R \times \ln\left(\frac{V_{final}}{V_A}\right) \] \[ \Delta S_B = n_B \times R \times \ln\left(\frac{V_{final}}{V_B}\right) \] Step 4: Sum the changes in entropy: \[ \Delta S = \Delta S_A + \Delta S_B \] The change in total entropy for the process is \( 18.7 \, J/K \) rounded to 1 decimal place.
A hot plate is placed in contact with a cold plate of a different thermal conductivity as shown in the figure. The initial temperature (at time $t = 0$) of the hot plate and cold plate are $T_h$ and $T_c$, respectively. Assume perfect contact between the plates. Which one of the following is an appropriate boundary condition at the surface $S$ for solving the unsteady state, one-dimensional heat conduction equations for the hot plate and cold plate for $t>0$?

The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:

\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is _________ MPa (rounded off to 3 decimal places).
The internal energy of air in $ 4 \, \text{m} \times 4 \, \text{m} \times 3 \, \text{m} $ sized room at 1 atmospheric pressure will be $ \times 10^6 \, \text{J} $. (Consider air as a diatomic molecule)
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:
