Step 1: Let \( x \) litres of water be added to 60 litres of milk.
Water is free (cost \rupee0), and milk costs \rupee20/litre.
The mixture value is \rupee\( 10 \frac{2}{3} \) or \rupee\( \frac{32}{3} \) per litre.
\[
\text{Average price} = \frac{60 \times 20 + x \times 0}{60 + x} = \frac{1200}{60 + x}
\]
Step 2: Equating to the average cost:
\[
\frac{1200}{60 + x} = \frac{32}{3}
\Rightarrow 1200 \times 3 = 32(60 + x)
\Rightarrow 3600 = 1920 + 32x
\Rightarrow 32x = 1680 \Rightarrow x = \frac{1680}{32} = 15
\]
Thus, 15 litres of water must be added.