Step 1: Understand atomic and nuclear dimensions
The radius of a typical atom is approximately \( 10^{-10} \, \text{m} \).
The radius of a nucleus is given by:
\[
R = r_0 A^{1/3}
\]
where \( r_0 \approx 1.2 \times 10^{-15} \, \text{m} \) and \( A \) is the mass number.
For a typical atom with \( A = 100 \):
\[
R_{\text{nucleus}} \approx 1.2 \times 10^{-15} \times 100^{1/3} \approx 1.2 \times 10^{-15} \times 4.64 \approx 5.57 \times 10^{-15} \, \text{m}
\]
Step 2: Calculate the ratio
\[
\frac{R_{\text{atom}}}{R_{\text{nucleus}}} = \frac{10^{-10}}{5.57 \times 10^{-15}} \approx 1.8 \times 10^4 \approx 10^4
\]
So, the radius of an atom is about \( 10^4 \) times greater than the radius of its nucleus.
Step 3: Conclusion
The correct answer is:
\[
{10^4 \text{ times}}
\]