In the isochemical phase diagram shown below, the curved arrow represents the P-T path. The variance at peak metamorphism is _. 
Two boreholes A and B, both inclined towards 270°, penetrate a dipping coal bed at the same point and pass through it entirely in the sub-surface as shown in the figure below. The bed dips towards 270°. The thickness of the coal bed, measured along the borehole A is 10 m and along borehole B is 8 m. The angle between the two boreholes is 20°. The orthogonal thickness \( x \) of the coal bed is ........ m. (Round off to one decimal place) 
The data tabulated below are for flooding events in the last 400 years.
The probability of a large flood accompanied by a glacial lake outburst flood (GLOF) in 2025 is ........... \(\times 10^{-3}\). (Round off to one decimal place)
| Year | Flood Size | Magnitude rank |
|---|---|---|
| 1625 | Large | 2 |
| 1658 | Large + GLOF | 1 |
| 1692 | Small | 4 |
| 1704 | Large | 2 |
| 1767 | Large | 2 |
| 1806 | Small | 4 |
| 1872 | Large + GLOF | 1 |
| 1909 | Large | 2 |
| 1932 | Large | 2 |
| 1966 | Medium | 3 |
| 2023 | Large + GLOF | 1 |
A satellite launching vehicle is carrying a lander for Moon mapping.
As shown in the figure below, P is the position where the gravitational forces exerted by Earth and Moon on the vehicle balance out.
The distance \( P \) from the center of the Earth is ........... \(\times 10^5\) km. (Round off to two decimal places)
The isobaric temperature-composition (T–X) phase diagram given below shows the phase relation between components M and N. The equilibrium melting undergone by the rock R to generate the liquid of composition L is .............. % (In integer )
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \] 
The mean of the posterior distribution is (Answer in integer)
Consider a medium of uniform resistivity with a pair of source and sink electrodes separated by a distance \( L \), as shown in the figure. The fraction of the input current \( (I) \) that flows horizontally \( (I_x) \) across the median plane between depths \( z_1 = \frac{L}{2} \) and \( z_2 = \frac{L\sqrt{3}}{2} \), is given by \( \frac{I_x}{I} = \frac{L}{\pi} \int_{z_1}^{z_2} \frac{dz}{(L^2/4 + z^2)} \). The value of \( \frac{I_x}{I} \) is equal to 
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)