Finding the Number of Trailing Zeros in \( N! \):
The number of trailing zeros in \( N! \) is given by the formula:
\[ \sum_{i=1}^{\infty} \left\lfloor \frac{N}{5^i} \right\rfloor \]
Calculation for \( 69! \):
- First term: \[ \left\lfloor \frac{69}{5} \right\rfloor = 13 \]
- Second term: \[ \left\lfloor \frac{69}{25} \right\rfloor = 2 \]
- Third term: \[ \left\lfloor \frac{69}{125} \right\rfloor = 0 \]
Total Trailing Zeros:
\[ 13 + 2 + 0 = 15 \]
Final Answer:
Thus, the correct answer is 15 (Option A).