Given: water= 50kg/min, oil = 100kg/min
\[
C_{p,\text{water}} = 4.2 \, \text{kJ/kg}^{\circ}\text{C}, \quad C_{p,\text{oil}} = 2 \, \text{kJ/kg}^{\circ}\text{C}, \quad U = 200 \, \text{W/m}^2{}^{\circ}\text{C}.
\]
\[
\text{Calculate } A = ?
\]
Step 1: Heat balance at steady state.
At steady state,
\[
\text{Heat transfer by hot fluid} = \text{Heat gained by cold fluid}.
\]
\[
\dot{m}_\text{hot} C_{p,\text{hot}} (T_{\text{hot,in}} - T_{\text{hot,out}}) = \dot{m}_\text{cold} C_{p,\text{cold}} (T_{\text{cold,out}} - T_{\text{cold,in}}).
\]
Substituting the given values:
\[
100 \times 2 \times (110 - T_{\text{hot,out}}) = 50 \times 4.2 \times (70 - 30).
\]
\[
100 \times 2 \times (110 - T_{\text{hot,out}}) = 50 \times 4.2 \times 40.
\]
Simplify:
\[
100 \times 2 \times (110 - T_{\text{hot,out}}) = 8400.
\]
\[
110 - T_{\text{hot,out}} = \frac{8400}{200} = 42.
\]
\[
T_{\text{hot,out}} = 110 - 42 = 68^{\circ}\text{C}.
\]
Step 2: Log Mean Temperature Difference (LMTD).
The log mean temperature difference is given by:
\[
\Delta T_\text{m} = \frac{\Delta T_1 - \Delta T_2}{\ln \left(\frac{\Delta T_1}{\Delta T_2}\right)}.
\]
Here:
\[
\Delta T_1 = T_{\text{hot,in}} - T_{\text{cold,out}} = 110 - 30 = 80,
\]
\[
\Delta T_2 = T_{\text{hot,out}} - T_{\text{cold,in}} = 68 - 70 = -2.
\]
Substitute these values:
\[
\Delta T_\text{m} = \frac{80 - 38}{\ln \left(\frac{80}{38}\right)} \approx 38.99^{\circ}\text{C}.
\]
Step 3: Heat transfer area calculation.
The heat transfer equation is:
\[
Q = U A \Delta T_\text{m}.
\]
Substituting \( Q = 50 \times 4.2 \times (70 - 30) = 8400 \, \text{W} \), \( U = 200 \, \text{W/m}^2{}^{\circ}\text{C} \), and \( \Delta T_\text{m} = 38.99^{\circ}\text{C} \), we get:
\[
8400 = 200 \cdot A \cdot 38.99.
\]
Final Answer:
\[
A = 17.95 \, \text{m}^2.
\]