A well-developed succession of laminated shale is bound by two volcanic ash beds that were precisely dated as shown in the schematic diagram given below. Assuming a constant sedimentation rate, the age of the fossiliferous limestone bed 65 m above the basal volcanic ash bed is ............ Ma. (Round off to nearest integer) 
Match the stratigraphic units in Group I with their corresponding basins in Group II.
| Group I | Group II |
|---|---|
| P. Kajrahat Limestone | 1. Cuddapah |
| Q. Shahabad Limestone | 2. Pranhita-Godavari |
| R. Chanda Limestone | 3. Vindhyan |
| S. Narji Limestone | 4. Bhima |
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \] 
The mean of the posterior distribution is (Answer in integer)
Consider a medium of uniform resistivity with a pair of source and sink electrodes separated by a distance \( L \), as shown in the figure. The fraction of the input current \( (I) \) that flows horizontally \( (I_x) \) across the median plane between depths \( z_1 = \frac{L}{2} \) and \( z_2 = \frac{L\sqrt{3}}{2} \), is given by \( \frac{I_x}{I} = \frac{L}{\pi} \int_{z_1}^{z_2} \frac{dz}{(L^2/4 + z^2)} \). The value of \( \frac{I_x}{I} \) is equal to 
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)