A shop selling electronic items sells smartphones of only three reputed companies A, B, and C because chances of their manufacturing a defective smartphone are only 5%, 4%, and 2% respectively. In his inventory, he has 25% smartphones from company A, 35% smartphones from company B, and 40% smartphones from company C.
A person buys a smartphone from this shop
A shop selling electronic items sells smartphones of only three reputed companies A, B, and C because chances of their manufacturing a defective smartphone are only 5%, 4%, and 2% respectively. In his inventory, he has 25% smartphones from company A, 35% smartphones from company B, and 40% smartphones from company C.
A person buys a smartphone from this shop
(i) Find the probability that it was defective.
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |
Categories of Reporting Area | As a percentage of total cultivable land (1950-51) | As a percentage of total cultivable land (2014-15) | Area (1950-51) | Area (2014-15) |
---|---|---|---|---|
Culturable waste land | 8.0 | 4.0 | 13.4 | 6.8 |
Fallow other than current fallow | 6.1 | 3.6 | 10.2 | 6.2 |
Current fallow | 3.7 | 4.9 | 6.2 | 8.4 |
Net area sown | 41.7 | 45.5 | 70.0 | 78.4 |
Total Cultivable Land | 59.5 | 58.0 | 100.00 | 100.00 |
Independent Events are those events that are not dependent on the occurrence or happening of any other event. For instance, if we flip a dice and get 2 as the outcome, and if we flip it again and then get 6 as the outcome. In Both cases, the events have different results and are not dependent on each other.
All the events that are not dependent on the occurrence and nonoccurrence are denominated as independent events. If Event 1 does not depend on the occurrence of Event 2, then both Events 1 and 2 are independent Events.
Two Events: Event 1 and Event 2 are independent if,
P(2|1) = P (2) given P (1) ≠ 0
and
P (1|2) = P (1) given P (2) ≠ 0
Two events 1 and 2 are further independent if,
P(1 ∩ 2) = P(1) . P (2)