We are given \( \int_0^{x^3} f(t) dt = x^2 \sin 2\pi x \).
Differentiate both sides with respect to \( x \) using the given formula for the derivative of a definite integral:
$$ \frac{d}{dx} \left[ \int_0^{x^3} f(t) dt \right] = \frac{d}{dx} (x^2 \sin 2\pi x) $$
Here, \( \phi(x) = x^3 \), so \( \phi'(x) = 3x^2 \).
Using the formula, the left side becomes \( \phi'(x) f(\phi(x)) = 3x^2 f(x^3) \).
Now, differentiate the right side using the product rule:
$$ \frac{d}{dx} (x^2 \sin 2\pi x) = (2x) \sin 2\pi x + x^2 (\cos 2\pi x \cdot 2\pi) = 2x \sin 2\pi x + 2\pi x^2 \cos 2\pi x $$
Equating both sides:
$$ 3x^2 f(x^3) = 2x \sin 2\pi x + 2\pi x^2 \cos 2\pi x $$
We need to find \( f(8) \).
To get \( x^3 = 8 \), we set \( x = 2 \).
Substitute \( x = 2 \) into the equation:
$$ 3(2)^2 f(2^3) = 2(2) \sin (2\pi \cdot 2) + 2\pi (2)^2 \cos (2\pi \cdot 2) $$
$$ 3(4) f(8) = 4 \sin (4\pi) + 8\pi \cos (4\pi) $$
We know that \( \sin(4\pi) = 0 \) and \( \cos(4\pi) = 1 \).
$$ 12 f(8) = 4(0) + 8\pi (1) $$
$$ 12 f(8) = 8\pi $$
$$ f(8) = \frac{8\pi}{12} = \frac{2\pi}{3} $$