Under $H_0$, $\overline X\sim N(10,4/n)$. The level-$0.05$ critical value $c$ satisfies \[ P_{H_0}(\overline X>c)=0.05 \;\;\Longleftrightarrow\;\; \frac{\overline X-10}{2/\sqrt n}>1.645 \;\;\Longrightarrow\;\; c=10+\frac{2\cdot1.645}{\sqrt n}. \] Power at $\mu=12$ is \[ P_{12}(\overline X>c) = P\!\left(\frac{\overline X-12}{2/\sqrt n}>\frac{c-12}{2/\sqrt n}\right) = P\!\left(Z> -\sqrt n+1.645\right). \] Type II error $\le 0.01$ means $P_{12}(\overline X>c)\ge 0.99$, i.e. \[ \Phi(\sqrt n-1.645)\ge 0.99 \;\Longrightarrow\; \sqrt n-1.645\ge 2.33 \;\Longrightarrow\; \sqrt n\ge 3.975. \] Hence $n\ge 15.80$, so the smallest integer is $\boxed{16}$.