Matrix \(A\) is a \(3 \times 3\) square matrix. To determine if it is skew-symmetric, we check if \(A^T = -A\). The transpose of \(A\) is:
\[ A^T = \begin{bmatrix} 0 & -\alpha & -\beta \\ \alpha & 0 & -\gamma \\ \beta & \gamma & 0 \end{bmatrix}. \]
Clearly, \(A^T = -A\), so \(A\) is a skew-symmetric matrix.
(B) The matrix is not a diagonal matrix since not all non-diagonal elements are zero.
(C) The matrix is not symmetric since \(A^T \neq A\).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |