Gas containing 0.8 mol% component \(A\) is to be scrubbed with pure water in a packed bed column to reduce the concentration of \(A\) to 0.1 mol% in the exit gas. The inlet gas and water flow rates are 0.1 kmol/s and 3.0 kmol/s, respectively. For the dilute system, both the operating and equilibrium curves are considered linear. If the slope of the equilibrium line is 24, the number of transfer units, based on the gas side, \(N_{OG}\) is __________ (rounded off to 1 decimal place).
\[ x_{\text{inlet}} = 0.8\% = 0.008 \quad \text{(mole fraction of \(A\) in the inlet gas)} \] \[ x_{\text{outlet}} = 0.1\% = 0.001 \quad \text{(mole fraction of \(A\) in the outlet gas)} \] \[ F = 0.1 \, \text{kmol/s} \quad \text{(inlet gas flow rate)} \] \[ W = 3.0 \, \text{kmol/s} \quad \text{(water flow rate)} \] \[ \text{slope of the equilibrium line} = 24 \]
Step 2: Number of Transfer Units Calculation.The number of transfer units (NTU) based on the gas phase is calculated as: \[ N_{OG} = \frac{\ln\left(\frac{x_{\text{inlet}} - x_{\text{outlet}}}{x_{\text{outlet}}}\right)}{\text{slope of equilibrium line}} \] Substituting the values: \[ N_{OG} = \frac{\ln\left(\frac{0.008 - 0.001}{0.001}\right)}{24} = \frac{\ln(7)}{24} \approx \frac{1.9459}{24} \approx 0.0811 \]
Final Answer: The number of transfer units based on the gas side is \( \boxed{0.0811} \).An ideal monoatomic gas is contained inside a cylinder-piston assembly connected to a Hookean spring as shown in the figure. The piston is frictionless and massless. The spring constant is 10 kN/m. At the initial equilibrium state (shown in the figure), the spring is unstretched. The gas is expanded reversibly by adding 362.5 J of heat. At the final equilibrium state, the piston presses against the stoppers. Neglecting the heat loss to the surroundings, the final equilibrium temperature of the gas is __________ K (rounded off to the nearest integer).
The residence-time distribution (RTD) function of a reactor (in min$^{-1}$) is 
The mean residence time of the reactor is __________ min (rounded off to 2 decimal places).}
Ideal nonreacting gases A and B are contained inside a perfectly insulated chamber, separated by a thin partition, as shown in the figure. The partition is removed, and the two gases mix till final equilibrium is reached. The change in total entropy for the process is _________J/K (rounded off to 1 decimal place).
Given: Universal gas constant \( R = 8.314 \) J/(mol K), \( T_A = T_B = 273 \) K, \( P_A = P_B = 1 \) atm, \( V_B = 22.4 \) L, \( V_A = 3V_B \).
The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:
\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is __________ MPa (rounded off to 3 decimal places).