The problem given involves finding the temperature of the Sun's surface using the Stefan-Boltzmann law. The Stefan-Boltzmann law states that the power radiated per unit area of a black body in terms of its temperature is given by:
\( P = \sigma \cdot A \cdot T^4 \cdot \varepsilon \)
where:
Given:
Using the formula:
\( P = \sigma \cdot A \cdot T^4 \cdot \varepsilon \)
Substituting in the known values:
\( 3.9 \times 10^{26} = 5.67 \times 10^{-8} \cdot 6.1 \times 10^{18} \cdot T^4 \cdot 1 \)
Solving for \( T \), we rearrange the equation:
\( T^4 = \frac{3.9 \times 10^{26}}{5.67 \times 10^{-8} \cdot 6.1 \times 10^{18}} \)
\( T = \left(\frac{3.9 \times 10^{26}}{5.67 \times 10^{-8} \cdot 6.1 \times 10^{18}}\right)^{1/4} \)
Calculating the right-hand side:
\( T = \left(\frac{3.9 \times 10^{26}}{3.46 \times 10^{11}}\right)^{1/4} \)
\( T = \left(1.127 \times 10^{15}\right)^{1/4} \)
Taking the fourth root:
\( T \approx 5800 \) K
The correct temperature of the Sun's surface is therefore 5800 K, matching the option: 5800 K.
Consider the following statements: Statement I: \( 5 + 8 = 12 \) or 11 is a prime. Statement II: Sun is a planet or 9 is a prime.
Which of the following is true?
The value of \[ \int \sin(\log x) \, dx + \int \cos(\log x) \, dx \] is equal to
The value of \[ \lim_{x \to \infty} \left( e^x + e^{-x} - e^x \right) \] is equal to