The problem given involves finding the temperature of the Sun's surface using the Stefan-Boltzmann law. The Stefan-Boltzmann law states that the power radiated per unit area of a black body in terms of its temperature is given by:
\( P = \sigma \cdot A \cdot T^4 \cdot \varepsilon \)
where:
Given:
Using the formula:
\( P = \sigma \cdot A \cdot T^4 \cdot \varepsilon \)
Substituting in the known values:
\( 3.9 \times 10^{26} = 5.67 \times 10^{-8} \cdot 6.1 \times 10^{18} \cdot T^4 \cdot 1 \)
Solving for \( T \), we rearrange the equation:
\( T^4 = \frac{3.9 \times 10^{26}}{5.67 \times 10^{-8} \cdot 6.1 \times 10^{18}} \)
\( T = \left(\frac{3.9 \times 10^{26}}{5.67 \times 10^{-8} \cdot 6.1 \times 10^{18}}\right)^{1/4} \)
Calculating the right-hand side:
\( T = \left(\frac{3.9 \times 10^{26}}{3.46 \times 10^{11}}\right)^{1/4} \)
\( T = \left(1.127 \times 10^{15}\right)^{1/4} \)
Taking the fourth root:
\( T \approx 5800 \) K
The correct temperature of the Sun's surface is therefore 5800 K, matching the option: 5800 K.
An amount of ice of mass \( 10^{-3} \) kg and temperature \( -10^\circ C \) is transformed to vapor of temperature \( 110^\circ C \) by applying heat. The total amount of work required for this conversion is,
(Take, specific heat of ice = 2100 J kg\(^{-1}\) K\(^{-1}\),
specific heat of water = 4180 J kg\(^{-1}\) K\(^{-1}\),
specific heat of steam = 1920 J kg\(^{-1}\) K\(^{-1}\),
Latent heat of ice = \( 3.35 \times 10^5 \) J kg\(^{-1}\),
Latent heat of steam = \( 2.25 \times 10^6 \) J kg\(^{-1}\))
Match List-I with List-II.